Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Rev Soc Bras Med Trop ; 57: e00805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597526

RESUMO

Streptococcus suis has been widely reported as a pathogen in animals, especially pigs. In terms of human health implications, it has been characterized as a zoonosis associated with the consumption of pork products and occupational exposure, particularly in Southeast Asian countries. Here, we present a rare case of human S. suis infection in Brazil, diagnosed in an older adult swine farmer, a small rural producer residing in the semi-arid region of Bahia, Brazil.


Assuntos
Meningites Bacterianas , Infecções Estreptocócicas , Streptococcus suis , Animais , Humanos , Suínos , Brasil/epidemiologia , Zoonoses , Infecções Estreptocócicas/diagnóstico , Meningites Bacterianas/diagnóstico
2.
PLoS One ; 19(4): e0299691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568909

RESUMO

Streptococcus suis serotype 2 (SS2) is an important porcine pathogen that causes diseases in both swine and human. For rapid SS2 identification, a novel latex agglutination test (LAT) based on heavy-chain variable domain antibody (VH) was developed. Firstly, the soluble 47B3 VH antibody fragment from a phage display library, in which cysteine residues were engineered at the C-terminus, was expressed in Escherichia coli. The purified protein was then gently reduced to form monomeric soluble 47B3 VH subsequently used to coat with latex beads by means of site-specific conjugation. The resulting VH-coated beads gave a good agglutination reaction with SS2. The LAT was able to distinguish S. suis serotype 2 from serotype 1/2, which shares some common sugar residues, and showed no cross-reaction with other serotypes of S. suis or other related bacteria. The detection sensitivity was found to be as high as 1.85x106 cells. The LAT was stable at 4°C for at least six months without loss of activity. To the best of our knowledge, this is the first LAT based on a VH antibody fragment that can be considered as an alternative for conventional antibody-based LAT where VHs are the most favored recombinant antibody.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Sorogrupo , Testes de Fixação do Látex/métodos , Fragmentos de Imunoglobulinas , Proteínas Recombinantes/genética , Escherichia coli/genética , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia
3.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578304

RESUMO

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , China/epidemiologia , Humanos , Virulência , Animais , Camundongos , Feminino , Genômica , Fatores de Virulência/genética
4.
PLoS One ; 19(4): e0299905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635508

RESUMO

Streptococcus suis (S. suis) infections in weaned pigs are common and responsible for a high consumption of antimicrobials, and their presence is assumed to be multi-factorial. A specific evidence-based veterinary guideline to support the control of S. suis in weaned pigs was developed for veterinary practitioners in the Netherlands in 2014. Adherence to the S. suis clinical practice guideline helps veterinary practitioners to prevent and control the disease in a systematical approach and thereby improve antimicrobial stewardship and contribute to the prevention of antimicrobial resistance in animals and humans. The impact of such a clinical practice guideline on (animal) disease management depends not only on its content, but also largely on the extent to which practitioners adhere to the clinical guideline in practice. When the S. suis guideline was published, no specific activities were undertaken to support veterinarians' uptake and implementation, thereby contributing to suboptimal adherence in clinical practice. As the S. suis guideline was comprehensively written by veterinary experts following an evidence-based approach, our aim was not to judge the (scientific) quality of the guideline but to study the possibility to improve the currently low adherence of this guideline in veterinary practice. This paper describes the systematic development, using Implementation Mapping, of a theory-based intervention program to support swine veterinarians' adherence to the S. suis guideline. The knowledge, skills, beliefs about capabilities, and beliefs about consequences domains are addressed in the program, which includes seven evidence-based methods (modelling, tailoring, feedback, discussion, persuasive communication, active learning, and self-monitoring) for use in program activities such as a peer-learning meeting and an e-learning module. The intervention program has been developed for practicing swine veterinarians, lasts eight months, and is evaluated through a stepped-wedge design. The Implementation Mapping approach ensured that all relevant adopters and implementers were involved, and that outcomes, determinants (influencing factors), and objectives were systematically discussed.


Assuntos
Doenças dos Animais , Anti-Infecciosos , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Médicos Veterinários , Animais , Humanos , Suínos , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/prevenção & controle
5.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536216

RESUMO

Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.


Assuntos
Streptococcus suis , Humanos , Animais , Suínos , Virulência , França , Fatores de Virulência , DNA
6.
Vet Res ; 55(1): 34, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504299

RESUMO

Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.


Assuntos
Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Camundongos , Animais , Suínos , Sorogrupo , Forma Celular , Virulência , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
7.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456079

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Assuntos
Meningite , Streptococcus suis , Animais , Humanos , Suínos , Plasminogênio/metabolismo , Barreira Hematoencefálica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Translocação Bacteriana , Fibrinolisina/metabolismo , Sítios de Ligação , Fosfopiruvato Hidratase/química
8.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
9.
Future Microbiol ; 19: 107-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305226

RESUMO

Background: Biofilm formation is considered to be one of reasons for difficulty in the prevention and control of Streptococcus suis. Aims: To explore the potential genes involved in the biofilm formation of S. suis. Methods: Transposon mutagenesis technology was used to screen biofilm-defective strains of S. suis, and the potential genes related to biofilm were identified. Results: A total of 19 genes were identified that were involved in bacterial metabolism, peptidoglycan-binding protein, cell wall synthesis, ABC transporters, and so on. Conclusion: This study constructed 979 transposon mutation libraries of S. suis. A total of 19 gene loci related to the formation of S. suis biofilm were identified, providing a reference for exploring the mechanism of S. suis biofilm formation in the future.


Streptococcus suis is an important pathogen (this is a microorganism that causes, or can cause, disease) that can be transmitted between animals and humans. The ability to form a protective community, called a biofilm, is one of the reasons why we can have difficulty in preventing and treating S. suis infection. The main purpose of this study was to screen potential genes that may determine biofilm formation in S. suis. The results revealed 19 genes that may affect the biofilm formation of S. suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Streptococcus suis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Mutagênese , Biofilmes , Infecções Estreptocócicas/microbiologia
10.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331785

RESUMO

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Células Endoteliais/metabolismo , Sorogrupo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Encéfalo/metabolismo , Apoptose , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia
11.
Microb Pathog ; 188: 106565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309311

RESUMO

Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Humanos , Virulência , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Streptococcus suis/genética , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças dos Suínos/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
12.
Vet Res ; 55(1): 17, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321502

RESUMO

Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.


Assuntos
Endocardite , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Tipagem de Sequências Multilocus/veterinária , Tonsila Palatina/microbiologia , Streptococcus suis/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Endocardite/veterinária
13.
Emerg Infect Dis ; 30(3): 616-619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407167

RESUMO

In Jeju Island, South Korea, a patient who consumed raw pig products had subdural empyema, which led to meningitis, sepsis, and status epilepticus. We identified Streptococcus suis from blood and the subdural empyema. This case illustrates the importance of considering dietary habits in similar clinical assessments to prevent misdiagnosis.


Assuntos
Empiema Subdural , Sepse , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Empiema Subdural/diagnóstico , Streptococcus suis/genética , República da Coreia , Comportamento Alimentar , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico
14.
Emerg Infect Dis ; 30(3): 413-422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407169

RESUMO

Streptococcus suis, a zoonotic bacterial pathogen circulated through swine, can cause severe infections in humans. Because human S. suis infections are not notifiable in most countries, incidence is underestimated. We aimed to increase insight into the molecular epidemiology of human S. suis infections in Europe. To procure data, we surveyed 7 reference laboratories and performed a systematic review of the scientific literature. We identified 236 cases of human S. suis infection from those sources and an additional 87 by scanning gray literature. We performed whole-genome sequencing to type 46 zoonotic S. suis isolates and combined them with 28 publicly available genomes in a core-genome phylogeny. Clonal complex (CC) 1 isolates accounted for 87% of typed human infections; CC20, CC25, CC87, and CC94 also caused infections. Emergence of diverse zoonotic clades and notable severity of illness in humans support classifying S. suis infection as a notifiable condition.


Assuntos
Streptococcus suis , Humanos , Animais , Suínos , Epidemiologia Molecular , Streptococcus suis/genética , Europa (Continente)/epidemiologia , Filogenia , Sequenciamento Completo do Genoma
15.
Microbiol Spectr ; 12(2): e0280323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230928

RESUMO

Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Streptococcus suis/genética , Macrolídeos/uso terapêutico , Metionina/metabolismo , Metionina/uso terapêutico , Doxiciclina/uso terapêutico , Infecções Estreptocócicas/microbiologia , Antibacterianos/uso terapêutico , Ciprofloxacina , Homocisteína/metabolismo , Homocisteína/uso terapêutico
16.
Can Vet J ; 65(1): 75-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164374

RESUMO

Objective: The objective of this study was to monitor Streptococcus suis fecal shedding in nursery pigs on a farm with a history of S. suis disease involving serotypes 2 and 9. Animal and procedure: Four cohorts of pigs (n = 480) were monitored from weaning to end of nursery. Rectal swabs from 297 pigs were tested and S. suis serotypes 15 (n = 7), 31 (n = 3), or untypeable (n = 6) isolates were recovered from 16 (5.4%) pigs. Results: There was no significant association between S. suis fecal shedding and diarrhea. Streptococcus suis isolates recovered from pigs euthanized due to neurological signs or severe lameness were serotypes 9 (meninges) and 31 (tonsil) or untypeable (meninges, tonsil). Serotypes 9 (meninges, tonsil), 15 (spleen, tonsil), 16 (tonsil), 29 and 33 (nasal swabs), and untypeable (meninges, tonsil, and lung) isolates were identified in lame pigs. Conclusion and clinical relevance: These results suggest that feces may not be a source of infection for the S. suis serotypes producing disease in pigs; however, the association between S. suis fecal shedding and diarrhea needs further investigation. The coincidence of untypeable isolates in feces from healthy pigs and their isolation from meninges of pigs with neurological signs warrants further investigation to determine the molecular characteristics of those isolates.


Une enquête sur l'excrétion fécale des sérotypes de Streptococcus suis chez les porcelets en pouponnière. Objectif: L'objectif de cette étude était de surveiller l'excrétion fécale de Streptococcus suis chez des porcelets en pouponnière dans une ferme ayant des antécédents de maladie à S. suis impliquant les sérotypes 2 et 9. Animal et procédure: Quatre cohortes de porcs (n = 480) ont été suivies du sevrage jusqu'à la fin de la période en pouponnière. Des écouvillons rectaux provenant de 297 porcs ont été testés et des isolats de S. suis des sérotypes 15 (n = 7), 31 (n = 3) ou non-typables (n = 6) ont été récupérés chez 16 (5,4 %) porcs. Résultats: Il n'y avait aucune association significative entre l'excrétion fécale de S. suis et la diarrhée. Les isolats de S. suis récupérés chez des porcs euthanasiés en raison de signes neurologiques ou d'une boiterie sévère étaient de sérotypes 9 (méninges) et 31 (amygdales) ou non-typables (méninges, amygdales). Les sérotypes 9 (méninges, amygdales), 15 (rate, amygdales), 16 (amygdales), 29 et 33 (écouvillonnages nasaux) et des isolats non-typables (méninges, amygdales et poumons) ont été identifiés chez des porcs boitant. Conclusion et pertinence clinique: Ces résultats suggèrent que les matières fécales pourraient ne pas être une source d'infection pour les sérotypes de S. suis produisant des maladies chez les porcs; cependant, l'association entre l'excrétion fécale de S. suis et la diarrhée nécessite des recherches plus approfondies. La coïncidence d'isolats non-typables dans les selles de porcs sains et leur isolement dans les méninges de porcs présentant des signes neurologiques justifient des recherches plus approfondies pour déterminer les caractéristiques moléculaires de ces isolats.(Traduit par Dr Serge Messier).


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Sorogrupo , Infecções Estreptocócicas/veterinária , Diarreia/veterinária
17.
Virulence ; 15(1): 2301246, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170683

RESUMO

Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Humanos , Suínos , Camundongos , Evasão da Resposta Imune , Complemento C3a , Streptococcus suis/metabolismo , Citocinas , Subtilisinas/metabolismo , Infecções Estreptocócicas/microbiologia
18.
Vet Microbiol ; 290: 110005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280304

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that is widespread in swine populations. The control of S. suis infection and its associated diseases is a daunting challenge worldwide. Biofilm formation appears to be the main reason for the persistence of S. suis. In this review we gather existing knowledge on S. suis biofilm, describing the role of biofilm formation in S. suis virulence and drug resistance, the regulatory factors of S. suis biofilm formation, and the research progress of inhibiting S. suis biofilm formation, with the aim of providing guidance for future studies related to the field of S. suis biofilms.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Suínos , Virulência , Biofilmes , Infecções Estreptocócicas/veterinária
19.
Virulence ; 15(1): 2306691, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251716

RESUMO

Pathogenic bacteria have evolved many strategies to evade surveillance and attack by complements. Streptococcus suis is an important zoonotic pathogen that infects humans and pigs. Hyaluronidase (HylA) has been reported to be a potential virulence factor of S. suis. However, in this study, it was discovered that the genomic region encoding HylA of the virulent S. suis strain SC19 and other ST1 strains was truncated into four fragments when aligned with a strain containing intact HylA and possessing hyaluronidase activity. As a result, SC19 had no hyaluronidase activity, but one truncated HylA fragment, designated as HylS,' directly interacted with complement C3b, as confirmed by western ligand blotting, pull-down, and ELISA assays. The deposition of C3b and membrane attack complex (MAC) formation on the surface of a HylS'-deleted mutant (ΔhylS') was significantly increased compared to wild-type SC19. In human sera and whole blood, ΔhylS' survival was significantly reduced compared to that in SC19. The resistance of ΔhylS' to macrophages and human polymorphonuclear neutrophil PMNs also decreased. In a mouse infection model, ΔhylS' showed reduced lethality and lower bacterial load in the organs compared to that of SC19. We conclude that the truncated hyaluronidase HylS' fragment contributes to complement evasion and the pathogenesis of S. suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Camundongos , Animais , Humanos , Suínos , Evasão da Resposta Imune , Complemento C3b , Hialuronoglucosaminidase/genética , Fatores de Virulência/genética , Proteínas do Sistema Complemento , Fatores Imunológicos , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/genética
20.
PLoS One ; 19(1): e0296844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261585

RESUMO

The porcine pathogen and zoonotic agent Streptococcus suis induces an exacerbated inflammation in the infected hosts that leads to sepsis, meningitis, and sudden death. Several virulence factors were described for S. suis of which the capsular polysaccharide (CPS) conceals it from the immune system, and the suilysin exhibits cytotoxic activity. Although neutrophils are recruited rapidly upon S. suis infection, their microbicidal functions appear to be poorly activated against the bacteria. However, during disease, the inflammatory environment could promote neutrophil activation as mediators such as the granulocyte colony-stimulating factor granulocyte (G-CSF) and the granulocyte-macrophages colony-stimulating factor (GM-CSF) prime neutrophils and enhance their responsiveness to bacterial detection. Thus, we hypothesized that CPS and suilysin prevent an efficient activation of neutrophils by S. suis, but that G-CSF and GM-CSF rescue neutrophil activation, leading to S. suis elimination. We evaluated the functions of porcine neutrophils in vitro in response to S. suis and investigated the role of the CPS and suilysin on cell activation using isogenic mutants of the bacteria. We also studied the influence of G-CSF and GM-CSF on neutrophil response to S. suis by priming the cells with recombinant proteins. Our study confirmed that CPS prevents S. suis-induced activation of most neutrophil functions but participates in the release of neutrophil-extracellular traps (NETs). Priming with G-CSF did not influence cell activation, but GM-CSF strongly promote IL-8 release, indicating its involvement in immunomodulation. However, priming did not enhance microbicidal functions. Studying the interaction between S. suis and neutrophils-first responders in host defense-remains fundamental to understand the immunopathogenesis of the infection and to develop therapeutical strategies related to neutrophils' defense against this bacterium.


Assuntos
Fatores Estimuladores de Colônias , Streptococcus suis , Animais , Suínos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neutrófilos , Fator Estimulador de Colônias de Granulócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...